ALGÈBRE LINÉAIRE - MATH111(F) Semestre d'automne — 2024-2025

Série 8: Théorème du rang, bases et coordonnées

Objectifs de cette série

À la fin de cette série vous devriez être capable de

- (O.1) utiliser le théorème du rang pour calculer des dimensions de sous-espaces;
- (O.2) calculer les coordonnées d'un vecteur relatives à une base.

Nouveau vocabulaire dans cette série

- rang d'une application linéaire
- rang d'une matrice

- matrices ligne-équivalentes
- coordonnées

Noyau d'exercices

1.1 Théorème du rang et bases des noyaux et des images

Exercice 1 (Théorème du rang I)

- (a) Soit *A* une matrice de taille 5×6 . Si dim(Ker(*A*)) = 3, quel est le rang de *A*?
- (b) Soit A une matrice de taille 7×3 . Quel est le rang maximum de A? Quelle est la dimension minimum de Ker(A)? Répondre aux mêmes questions si A est une matrice de taille 3×7 .
- (c) Soit A une matrice carrée de taille n. Donner une condition sur rang(A) pour que A^T soit inversible.
- (d) Soit $T: \mathbb{P}_3 \to \mathbb{M}_{3\times 2}(\mathbb{R})$ une application linaire. Si dim(Ker(T)) = 1, quel est le rang de T?
- (e) Soit $T: \mathbb{R}^3 \to \mathbb{R}^3$ une transformation linéaire telle que $T \circ T \circ T = \mathrm{id}_{\mathbb{R}^3}$, où $\mathrm{id}_{\mathbb{R}^3}$ est l'application identité de \mathbb{R}^3 . Quelle est la dimension de $\mathrm{Ker}(T)$?

Exercice 2 (Théorème du rang II)

Soit

$$A = \begin{pmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\ 5 & -6 & 10 & 7 \end{pmatrix}.$$

Donner une base pour le noyau, l'image, et le sous-espace vectoriel Lgn(A) engendré par les lignes de A, puis vérifier l'affirmation du théorème du rang dans ce cas.

Exercice 3 (Théorème du rang III)

Soit

$$A = \begin{pmatrix} 1 & 0 & 2 & 3 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

- (a) Déterminer le rang de A et la dimension du noyau de A.
- (b) Même question pour A^{T} .
- (c) On suppose qu'une matrice A de taille 7×7 possède un pivot dans chaque ligne. Quel est le rang de A? Quelle est la dimension du noyau de A?
- (d) On considère une matrice A de taille $m \times n$ et un vecteur $\mathbf{b} \in \mathbb{R}^m$. Quelle doit être la relation entre le rang de la matrice $[A:\mathbf{b}]$ et le rang de A pour que l'équation $A\mathbf{x} = \mathbf{b}$ soit compatible?

1.2 Bases et coordonnées

Exercice 4 (Coordonnées I)

(a) On considère les vecteurs

$$\mathbf{v} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \ \mathbf{b}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \text{ et } \mathbf{b}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

exprimés dans la base canonique de \mathbb{R}^2 . Trouver les coordonnées de \mathbf{v} dans la base $\{\mathbf{b}_1,\mathbf{b}_2\}$ de \mathbb{R}^2 .

(b) On considère les vecteurs

$$\mathbf{v} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}, \ \mathbf{b}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \ \mathbf{b}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \text{ et } \mathbf{b}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix},$$

exprimés dans la base canonique de \mathbb{R}^3 . Trouver les coordonnées de \mathbf{v} dans la base $\{\mathbf{b}_1,\mathbf{b}_2,\mathbf{b}_3\}$ de \mathbb{R}^3 .

Exercice 5 (Bases et coordonnées)

(a) Prouver que les vecteurs

$$\mathbf{u} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \ \mathbf{v} = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} \text{ et } \mathbf{w} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

forment une base de \mathbb{R}^3 . Calculer le vecteur de coordonnées de

$$\nu = \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}$$

relatives à la base précédente.

- (b) Démontrer que l'ensemble $\mathcal{B}' = \{1 + t^2, t + t^2, 1 + 2t + t^2\}$ est une base de \mathbb{P}_2 , l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à 2. Calculer le vecteur de coordonnées de p = t relatives à la base précédente.
- (c) Soit $\mathbb{M}_{2\times 3}(\mathbb{R})$ l'espace vectoriel des matrices de taille 2×3 . Montrer que les matrices

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \text{ et } D = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

sont linéairement indépendantes. Compléter cette famille de quatre matrices en une base de $\mathbb{M}_{2\times 3}(\mathbb{R})$ et calculer le vecteur de coordonnées de la matrice

$$E = \begin{pmatrix} 2 & 1 & 1 \\ 1 & -2 & 0 \end{pmatrix}$$

relatives à la base obtenue.

Exercice 6 (Coordonnées II)

On rappelle que \mathbb{P}_2 est l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à 2. Soit $\mathcal{B} = \{1 + t^2, t + t^2, 1 + 2t + t^2\}$ la base de \mathbb{P}_2 et $p = 1 + 4t + 7t^2$. Calculer les coordonnés de p relatives à la base \mathcal{B} .

🧸 Pour compléter la pratique

2.1 Preuve d'un résultat du cours

Exercice 7 (Une autre caractérisation de la notion de base)

Soient V un espace vectoriel et $\mathcal{B} = \{v_1, \dots, v_n\}$ une famille finie de n vecteurs de V. Alors, \mathcal{B} est une base de V si et seulement si tout vecteur $v \in V$ s'écrit de manière unique comme combinaison linéaire des vecteurs de \mathcal{B} .

2.2 Théorème du rang et bases des noyaux et des images

Exercice 8 (Théorème du rang IV)

Rappel de la théorie

Soient

$$A = \begin{pmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\ 5 & -6 & 10 & 7 \end{pmatrix} \text{ et } B = \begin{pmatrix} 1 & 0 & -1 & 5 \\ 0 & -2 & 5 & -6 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

(a) Montrer que les matrices A et B sont ligne-équivalentes.

Indication : quelles sont les formes échelonnées réduites de ces deux matrices?

- (b) En utilisant seulement que A et B sont ligne-équivalente et le théorème du rang, calculer le rang de A et dim(Ker(A)).
- (c) Trouver une base pour chacun des sous-espaces Img(B), Ker(B) et $Ker(B^T)$, ainsi que du sous-espace vectoriel Lgn(B) engendré par les lignes de B.
- (d) En utilisant seulement que *A* et *B* sont ligne-équivalente et le théorème du rang, trouver une base pour chacun des sous-espaces Img(*A*), Ker(*A*) et Ker(*A*^T), ainsi que du sous-espace vectoriel Lgn(*A*) engendré par les lignes de *A*. Que remarquez-vous? Dans quel(s) cas est-il nécessaire d'effectuer de nouveaux calculs?

Exercice 9 (QCM sur le théorème du rang)

Résoudre les QCM dans les items suivants, où chaque QCM n'admet qu'une seule réponse correcte.

(a) Soit

$$A = \begin{pmatrix} -1 & 3 \\ -2 & 6 \\ -4 & 12 \\ 3 & -9 \end{pmatrix},$$

	$\begin{pmatrix} -4 & 12 \\ 3 & -9 \end{pmatrix}'$						
alors							
	$Img(A)$ est un sous-espace vectoriel de \mathbb{R}^4 de dimension 0; $Img(A)$ est un sous-espace vectoriel de \mathbb{R}^2 de dimension 0;						
	$Img(A)$ est un sous-espace vectoriel de \mathbb{R}^4 de dimension 1;						
	$Img(A)$ est un sous-espace vectoriel de \mathbb{R}^2 de dimension 1.						
(b) Il existe une matrice A de taille 3×7 telle que							
	$\dim(\operatorname{Ker}(A)) = 2 \text{ et } \dim(\operatorname{Img}(A)) \le 4;$						
	$\dim(\operatorname{Ker}(A)) = 4 \operatorname{et} \dim(\operatorname{Img}(A)) \le 2;$						
	$\dim(\operatorname{Ker}(A)) = 5 \operatorname{et} \dim(\operatorname{Img}(A)) = 2.$						
(c) Si <i>A</i> est une matrice inversible de taille 5, alors							
	les colonnes de A n'engendrent pas \mathbb{R}^5 ;						
	les lignes de A sont linéairement indépendantes ;						
	le noyau de A est vide;						
	le rang de <i>A</i> est strictement plus petit que 5.						
(d) La matrice qui représente une application linéaire $T: \mathbb{M}_{3\times 3}(\mathbb{R}) \to \mathbb{R}^3$ est de taille							
$3 \times 3;$ $3 \times 9;$ $3 \times 6;$ $9 \times 3.$							

(e) Soit $T: \mathbb{P}_2 \to \mathbb{R}$ l'application définie par $T(p) = p(-1) + p(0) + p(1)$ pour tout $p \in \mathbb{P}_2$. Alors,						
T n'est pas une application linéaire;						
(f) Soit $T: \mathbb{P}_2 \to \mathbb{R}$ l'application définie par $T(p) = p(-1) + p(0) + p(1)$ pour tout $p \in \mathbb{P}_2$. Alors, une base du noyau de T est donnée par						
2.3 Bases et coordonnées						
Exercice 10 (QCM sur bases et coordonnées) Résoudre les QCM dans les items suivants, où chaque QCM n'admet qu'une seule réponse correcte. (a) L'ensemble $V = \left\{ A \in \mathbb{M}_{2 \times 2}(\mathbb{R}) : A \text{ est inversible} \right\}$						
(1 - 1.1.2×2(-1.5) 1.1. etc. 11. etc. 12.						
est un sous-espace vectoriel de $\mathbb{M}_{2\times 2}(\mathbb{R})$ de dimension 2;						
est un espace vectoriel pour la somme et le produit par scalaires usuels de matrices;						
n'est pas un sous-espace vectoriel de $\mathbb{M}_{2\times 2}(\mathbb{R})$;						
est le noyau d'une application linéaire $T: \mathbb{M}_{2\times 2}(\mathbb{R}) \to \mathbb{R}$.						
(b) Étant donné la base canonique						
$\mathcal{B} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$						
de $\mathbb{M}_{2 \times 2}(\mathbb{R})$ et la matrice						
$A = \begin{pmatrix} -1 & 2 \\ -2 & 1 \end{pmatrix},$						
alors le vecteur de coordonnées $[A]_{\mathscr{B}}$ de A relatives à la base \mathscr{B} est						
$\square \begin{pmatrix} 1 \\ -2 \\ 2 \\ 1 \end{pmatrix}; \qquad \square \begin{pmatrix} -1 \\ -2 \\ 2 \\ 1 \end{pmatrix}; \qquad \square \begin{pmatrix} -1 \\ 2 \\ -2 \\ 1 \end{pmatrix}; \qquad \square \begin{pmatrix} 1 \\ 2 \\ 2 \\ -1 \end{pmatrix}.$						

(c) La famille suivante est une base de $\mathbb{M}_{2\times 2}(\mathbb{R})$:

$\int \int 1$	0) (0	1) (1	1) (1	0)).
$\{ \{ 1 \}$	1), (1	1),(0	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}$	0)};
$\int \int 1$	0) (0	1) (1	0) (0	0)].
$\{(1$	0),(0	1),(0	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}$	1 <i>]</i> },
$\int \int 1$	0) (1	1) (1	1) (0	1).

$$\begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \}; \\ \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \}.$$